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Abstract

We address the problem of the chaotic transport of point particles and rigid dimers in an asymmetric periodic ratchet
potential. When the inertial term is taken into account, the dynamics can be chaotic and modify the transport properties. By
a comparison between the bifurcation diagram and the current, we identify the origin of the multiple current reversals as
bifurcations, usually from a chaotic to a periodic regime. We consider the dynamics of rigid dimers, as a function of size,
extending in this way our previous results for point particles.
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1. Introduction classical chaotic dynamics that determines the trans-
port properties. The implications of this chaotic dy-
There is an increasing interest in recent years in namics in deterministic ratchets have recently been
the study of the transport properties of nonlinear address in the quantum domain, together with the
systems that can extract usable work from unbiased possible connection with quantum chga@g—24]
non-equilibrium fluctuations. These so-called ratchet In particular, in a recent pap¢8] we established,
systems can be modeled, for instance, by consideringfor the first time, a connection between the current
a Brownian particle in a periodic asymmetric potential generated in a deterministic rocking ratchet and the
and acted upon by an external time-dependent force bifurcation diagram associated with chaotic dynam-
of zero average. This recent burst of work is motivated ics. It turns out that when we plot the current, defined
in part by the challenge to explain the unidirectional as an average velocity, against a control parameter of
transport of molecular motors in the biological realm the system, we found multiple current reversals; on
and the possibility for new methods of separation of the other hand, we can obtain a bifurcation diagram
particles. For recent reviews, sge-4]. plotting the velocity of the particle as a function of
Although the vast majority of the literature in this the same control parameter. We notice a clear con-
field considers the presence of noise, very recently nection between these two plots and by doing a close
there has been motivations to understand in detail the comparison we found that the current reversals occur
transport properties of classicdeterministic iner- associated with bifurcations. In many cases, these re-
tial ratchets[5—-21]. These ratchets have in general a versals occur in crisis bifurcations from a chaotic to a
periodic regime.
T Tel: +52-5-622-5130; fax:+52-5-622-5015. It is worth mentioning that this prediction has been
E-mail addressmateos@fisica.unam.mx (J.L. Mateos). verified qualitatively in a recent eXperiment done by
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Carapella et al[20], using the ratchet effect for a rel- Let us define the following dimensionless units:
ativistic flux quantum trapped in an annular Joseph- x" = x/L, xj = xo/L, t' = wot, w = wp/wo, b =

son junction embedded in an inhomogeneous magneticy /mwo anda = Fo/meS. Here, the frequencyyg
field. is given bywZ = 472Vps/mL? and§ is defined by

In this paper, we elaborate on this idea by studying § = sin(2r|x(|) + sin(4m|x;)).

current reversals and bifurcations for point particles  The frequencyyy is the frequency of the linearized
and extended rigid dimers. We analyze trajectories motion around the minima of the potential, thus we
and orbits in phase space for point particles. We also are scaling the time with the natural period of motion
present current reversals, as a function of the size g = 27 /wp. The dimensionless equation of motion,
of the rigid dimers, together with the corresponding after renaming the variables again without the primes,

bifurcation diagram.

The outline of the paper is as follows: 8ection 2
we introduce the equations of motion that define the
model and inSection 3we present the numerical re-

sults. Then we study the case of extended objects in

Section 4and finally we end with some concluding
remarks inSection 5

2. Theratchet potential model

Let us consider the one-dimensional problem of a
particle driven by a periodic time-dependent external
force, under the influence of an asymmetric periodic
potential of the ratchet type. The time average of
the external force is zero. Here, we do not take into
account any kind of noise and thus the dynamics is
deterministic. The equation of motion is given by

. . dvx)
mx +yx + ———

dx
wherem is the mass of the particle; the friction
coefficient, V(x) the external asymmetric periodic
potential, Fp the amplitude of the external force and
wp the frequency of the external driving force. The
ratchet potential is given by

Focos(wpt),

(1)
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where L is the periodicity of the potentialyy the
amplitude andv; an arbitrary constant. The potential
is shifted by an amountp in order that the minimum

of the potential is located at the origin.

becomes

dv(x)

X +bx + —— 3)
dx

where the dimensionless potential can be written as

a cos(wt),

Vix)y=C —
=c 472§

[sin 27 (x — x0)

+%sin 4t (x —xo)i| , (4)
and is depicted inFig. 1L The constantC is such
that V(0) = 0 and is given byC = —(sin2rxg +
0.25sin 4rxg) /4725. In this casexp ~ —0.19,8 ~
1.6 andC ~ 0.0173.

In the equation of motio(B), there are three dimen-
sionless parameters; b andw, defined above in terms
of physical quantities. The parameter= Fo/mLa%
is the ratio of the amplitude of the external force and
the force due to the potenti®(x). This can be seen
more clearly using the expression fdz)f) in terms of
the parameters of the potential. In this case, the ratio
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Fig. 1. The dimensionless ratchet periodic potenyak).
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becomes Besides the orbits in the extended phase space, we
1 RL 5) can obtain the Poincaré section, using as a strobo-

4= an2s Vo scopic time the period of oscillation of the external

i.e., except for a constant factar,is the ratio of Fg force. With the aid of Poincaré sections, we can dis-

and the forceVo/ L, whereVp is the amplitude and. tinguish between periodic and chaotic orbits and we
the periodicity of the potential (se®g. (2). The pa- can obtain a bifurcation diagram as a function of the
rameterb is simply the dimensionless friction coeffi- Parameter. As was shown irj6], there is a connec-
cient andw the ratio of the driving frequency of the tion between the bifurcation diagram and the current.
external force andy.

The extended phase space in which the dynamics is
taking place is three-dimensional, since we are dealing
with an inhomogeneous differential equation with an
explicit time dependence. This equation can be writ- ~ USINg the definition of the current given in the
ten as a three-dimensional dynamical system, that we P'€VIoUs section, we calculagefixing the parameters

solve numerically, using the fourth-order Runge—Kutta ? = 0-1 andw = 0.67 and varying the parameter
algorithm. The equation of motio8) is nonlinear ~ 1N€ current shows, as stressed bef@ré], multiple

and thus allows the possibility of periodic and chaotic CUTTent reversals and a complex variation withas
orbits. If the inertial term associated with the second Shown inFig. 2. We can observe strong fluctuations

derivative i was absent, then the dynamical system 2S well as portions where the current is approximately
could not be chaotic. constant. The challenge here is to explain this high

The main motivation behind this work is to study variability in the current with the aid of what we know
in detail the origin of the current reversal in a chaot- oM the nonlinear chaotic dynamics of the system.
ically deterministic rocked ratchet as found[8]. In In order to understand the first reversal of the cur-
order to do so, we have to study first the currérit- rent, let us analyze a range of valuesaobetween
self, that we define as the time average of the average®:065 and 0.085; we choge= 0.1 andw = 0.67. In
velocity over an ensemble of initial conditions. There- F9- 32, we show the bifurcation diagram as a function
fore, the current involves two different averages: the ©f ¢ and inFig. 3o we depict the current in the same
first average is oveM initial conditions, that we take ~ '@nge Ofa. Let us imagine that an ensemble of parti-
equally distributed in space, centered around the ori- cles are initially located at the minimum of the ratchet
gin and with an initial velocity equal to zero. For a potential around the origin, and that all these particles

fixed time, say;, we obtain an average velocity, that have an initial velocity equal to zero. For= 0, we
we denoted as;, and is given by have no external force and thus, all these patrticles re-
]

y main in the minimum around the origin and therefore
i — 1 Z () ©6) the current is zero. For very small valuesmgfve still
T M — L have a zero current, since the particles have friction
. . . and tend to oscillate in this minimum. However, there
T_he seco_nd averageis a tlme avera_ige; sihce we ta}ke 4s a critical value ofz for which the particles start to
dlscret.e time for the numerlcal s_o!utlon ofth_e equation overcome the potential barriers around the minimum
Qf mot|(.)n, we have a discrete finite §ethd|fferent and transport along the ratchet potential in a periodic
times¢;; then the current can be defined as or chaotic way.
1 N At the beginning, the current is dominated by trans-
J = N Z vj- @) port due to periodic orbits, but for larger valuesagf
j=1 some of the orbits in the ensemble become chaotic
This quantity is a single number for a fixed set of and the transport is not as efficient as before, result-
parameters, b, w. ing in a current that starts to oscillate erratically. In

3. Numerical results
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Fig. 2. Forb = 0.1 andw = 0.67 we show the current as a function ofz. We can see multiple current reversals.

fact, in this region, there exist the possibility of co- chaotic region, there is a crisis bifurcation (§28])
existence of multiple attractors in the phase space. Fortaking place at the critical valug; >~ 0.08092844. It
example, inFig. 3a, we have two coexistent attrac- is precisely at this bifurcation point that the current
tors: a periodic and a chaotic one, aroung- 0.067. reversal occurs. After this bifurcation, a periodic win-
In this case, depending on the initial conditions, some dow emerges, with an orbit of period 4.figs. 3a and
orbits in the ensemble can end up in the periodic at- b, we are analyzing only a short range of valueg ,of
tractor, and the rest in the chaotic attractor. In general, where the first current reversal takes place. If we vary
the current can depend on which basin of attraction « further, we can obtain multiple current reversals, as
one is located, because different attractors have dif- shown inFig. 2
ferent transport properties. For example, one attractor In order to understand in more detail the nature of
can transport particles in the positive direction, while the current reversal, let us look at the orbits just before
the other in the negative direction. and after the transition. The reversal occurs at the crit-
For values ofa even larger, all the orbits enter a ical valueac >~ 0.08092844. Ifa is below this critical
chaotic region through a period-doubling bifurcation, valueac, saya = 0.07, then the orbit is periodic, with
and the current starts to decrease inside this chaoticperiod 2. For this case we depict, kig. 4a, the posi-
band. Finally, exactly at the bifurcation point where a tion of the particle as a function of time. We notice a
periodic window opens, the current drops to zero and period-2 orbit, as can be distinguish in the bifurcation
becomes negative in a very abrupt way. diagram fora = 0.07. This orbit transport particles to
Let us focus first on the range of the control param- the positive direction and the corresponding velocity
eter where the first current reversal takes place. This is a periodic function of time of period 2, as shown
occurs around ~ 0.08 as shown irFig. 3. We can in Fig. 4b. The phase space for this orbit is depicted
observe a period-doubling route to chaos and after ain Fig. 4c. We notice that the particle oscillates for a
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Fig. 3. Forb = 0.1 andw = 0.67 we show: (a) the bifurcation diagram as a functiommadnd (b) the curreny as a function ofz. The
range in the parameter corresponds to the first current reversal.
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Fig. 4. Forb = 0.1, w = 0.67 anda = 0.07 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a function
of time and (c) the phase space. This case corresponds to positive current.
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Fig. 4. Continued.

while around the minima of the ratchet potential, be-
fore moving to the next one. The spatial asymmetry of
the potential is apparent in this orbit in phase space.
In Fig. 5a, we show again the position as a function
of time fora = 0.081, which is just above the critical
valueac. In this case, we observe a period-4 orbit that
corresponds to the periodic window in the bifurcation
diagram inFig. 3a. This orbit is such that the particle
is “climbing” in the negative direction, i.e., in the di-
rection in which the slope of the potential is higher.
We notice that there is a qualitative difference between
the periodic orbit that transport particles to the positive
direction and the periodic orbit that transport particles
to the negative direction: in the latter case, the patrticle
requires twice the time than in the former case, to ad-
vances one well in the ratchet potential. A closer look
at the trajectory irfFig. 5a reveals the “trick” that the
particle uses to navigate in the negative direction: in

The period-4 orbit is apparent Fig. Sb, where we
show the velocity as a function of time. Fg. 5,
we depict the corresponding phase space for this case.
The transporting orbit is more elaborate because it
involves motion to the positive and negative direc-
tions, as well as oscillations around the minima. In
Fig. 6a, we show a typical trajectory far just be-
low ac. The trajectory is chaotic and the correspond-
ing chaotic attractor is depicted fig. 7. In this case,
the particle starts at the origin with no velocity; it
jumps from one well in the ratchet potential to an-
other well to the right or to the left in a chaotic way.
The patrticle gets trapped, oscillating for a while in a
minimum (sticking mode), as is indicated by the in-
teger values ok in the ordinate, and suddenly starts
a running mode with average constant velocity in the
negative direction. In terms of the velocity, these run-
ning modes, as the one depictedig. 5a, correspond

order to advance one step to the left, it moves first one to periodic motion. This can be seen more clearly
step to the right and then two steps to the left. The net in Fig. 6b, where we plot the velocity as a function

result is a negative current.

of time in the same range of values as the orbit in
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Fig. 5. Forb = 0.1, w = 0.67 anda = 0.081 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a
function of time and (c) the phase space. This case corresponds to negative current.
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Fig. 5. Continued.

Fig. 6a. InFig. 6¢c, we show the corresponding phase
space.

The phenomenology can be described as follows.

For values ofi aboveuc, as inFig. 5a, the attractor is a
periodic orbit. Fow slightly less tham there are long
stretches of time (running or laminar modes) during
which the orbit appears to be periodic and closely re-
sembles the orbit far > ac, but this regular (approxi-
mately periodic) behavior imtermittentlyinterrupted

by finite duration “bursts” in which the orbit behaves
in a chaotic manner. The net result in the velocity is a
set of periodic stretches of time interrupted by burst of
chaotic motion, signaling precisely the phenomenon
of intermittency[25]. As a approachu. from below,
the duration of the running modes in the negative di-
rection increases, until the duration diverges at ac,
where the trajectory becomes truly periodic.

To complete this picture, iRig. 7, we show two at-
tractors: (1) the chaotic attractor fer= 0.08092, just
below ac, corresponding to the trajectory kig. 6a,
and (2) the period-4 attractor fau 0.08093,

corresponding to the trajectory Fig. 5a. This peri-
odic attractor consists of four points in phase space,
which are located at the center of the open circles. We
obtain these attractors confining the dynamicstin
between-0.5 and 05, i.e., we used the periodicity of
the potentialV (x + 1) = V(x), to map the points in
thex-axis modulo 1. Thus, even though the trajectory
transport particles to infinity, when we confine the
dynamics, the chaotic structure of the attractor is ap-
parent. Asu approaches.; from below, the dynamics

in the attractor becomes intermittent, spending most
of the time in the vicinity of the period-4 attractor,
and suddenly “jumping” in a chaotic way for some
time, and then returning close to the period-4 attractor
again, and so on. In terms of the velocity, the result
is an intermittent time series as the one depicted in
Fig. ab.

In order to characterize the deterministic diffu-
sion in this regime, we calculate the mean square
displacement(x — (x))?) as a function of time. We
obtain numerically that(x — (x))?) ~ ¢, where the
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Fig. 6. Forb = 0.1, w = 0.67 anda = 0.08092844 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a
function of time and (c) the phase space. This case correspondsi¢ar the bifurcation, where the dynamics becomes intermittent and
there is anomalous diffusion.
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exponenty ~ 3/2. This is a signature of anomalous contrast, the trajectories iRigs. 4a and 5&ransport

deterministic diffusion, in which(x — (x))2) grows particles in a ballistic way, witlx = 2. The relation-
faster than linear, i.eq > 1 (superdiffusion). Normal  ship between anomalous deterministic diffusion and

deterministic diffusion corresponds i® = 1. In intermittent chaos has been explored recently, together
with the connection with Lévy flights (see the reviews
0.40 ‘ ' ‘ [26—28). The signature of this anomalous diffusion

can be seen more clearly Kig. 6a, where we plot a
trajectory showing running modes of different sizes,

0.20 typical from Lévy flights.

> 0.00 | 4. Extended objects: rigid dimers

Let us consider now the case where we have, instead
of a point particle, an extended rigid dimer of lengdth
i.e., two point particles kept rigidly at a fixed distance
~0.40 s - s d. If we define a dimensionless length-= d/L, where
-050  -0.25 0.00 0.25 0.50 L is the periodicity of the ratchet potential &g. (2)
X the dynamics of this dimer in the ratchet potential is

Fig. 7. Forb = 0.1 and w = 0.67 we show two attractors: a  €quivalent to the dynamics of a point particle in an
chaotic attractor fomu = 0.08092, just belowuc, and a period-4 effective potential given by

attractor, fora = 0.08093, consisting of four points located at the

center of the open circles (see R]). Ui(x) = %[V(x) + V(x +1)], (8)

-0.20 -
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whereV (x) is the dimensionless potential Eq. (4)
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In this section, we are considering the underdamped

Due to the periodicity of the dimensionless ratchet determinist dynamics of a rigid dimer. We solve the

potential V(x + 1) = V(x), we have that the effec-
tive dimensionless potential is periodig;(x + 1) =
U;(x). Since the period is 1, it is enough to take the
dimensionless length of the rigid dimer in the unit in-
terval: 0 < I < 1. We can see that we recover the
point particle case wheh= 0 or 1. The equation of
motion for this dimer is then given by

i+ b + U

= a cos(wt).

(9)

X

In this case, we have an additional paraméten
the dynamics. According to this equation of motion,

problem of the rigid dimer in the same fashion as the
point particle, but instead of calculating the currént
defined inSection 2 we calculate the time average of
the velocityv = x. This average is calculated over
periodsT of the external force, wherg is an integer
number andl’ = 2 /w. That is,

t+qT

= q_T i U(I/) dt/. (10)

<

Sincev = x, we obtainy = [x(t +qT) — x(1)]/qT. If
the particle moves a distangein a timeqT, wherep
is another integer number, then we have the condition

the dynamics of the dimer is modeled using a single x(t +qT) —x(z) = p. Thus, we obtain that the current

degree of freedom, since we are not considering anyis Tv =

internal degree of freedom or rotational motion.

p/q. This means that we havieequency
locking in which the current times the peridf is a

It is important to mention that several authors be- rational numbemp/q. We will see that this frequency
fore had studied the case of a rigid dimer in a ratchet locking takes place in a whole range of values of the

potential, in the overdamped limit. The case of a sin-
gle rigid dimer in the overdamped limit in the presence

of noise was studied if29,30]. They obtain a current

parametet.
In Fig. 8a, we show the bifurcation diagram as a
function of! in the unit interval, and ifrig. 8 the cor-

reversal as a function of the dimer length. Also, in the responding average velocity in the same range. We use
overdamped limit, there are studies of the collective the following values for the parameters:= 0.074,

transport ofN rigid rods of finite size; these rods are
interacting through hard core repulsi§®il,32] For

b = 0.1 andw = 0.67. We obtain a rich structure of
bifurcations when we vary the size of the rigid dimer.

an overview of the collective transport in ratchets, see We notice the presence of periodic and chaotic orbits.

[3,4,33]
More recently, the problem of horizontal transport

As a consequence of the complexity of the bifurca-
tion diagram, we obtain an average velocity with fine

of vertically vibrated granular layers on a ratchet was structure. Again, there is a clear connection between

addressed34,35} it was found that increasing the

the two graphs.

layer thickness leads to a reversal of the current. Farkas Let us briefly describe this connection in some

et al.[36] studied the case of granular binary mixtures

detail. For very small values dfwe have a positive

where, unlike other segregation phenomena, in which velocity fluctuating around'v = 1/2, associated with

the segregation is due to the collective behavior of the the period-2 orbit in the bifurcation diagram. After
grains, the interaction between the ratchet and the in- another bifurcation, the dynamics becomes chaotic
dividual particles is dominant. If the density of parti- for /[ >~ 0.05 and the average velocity decreases
cles is low, the interaction between the objects can be abruptly. For the chaotic region@ < [ < 0.2, the
neglected, recovering a single rod description. Finally, current decrease even more in an erratic way, except
Wambaugh et al[37] perform simulations of elon-  for a “jump” in the current around = 0.18, clearly
gated grains on a vibrating ratchet-shaped base; theyassociated with a periodic window in the bifurcation
consider grains composed of one (monomers), two diagram. Then, fof >~ 0.2, a crisis bifurcation occurs
(dimers) or three (trimers) collinear spheres. For some in which the chaotic attractor collapses to a period-1
parameters, they found that monomers and dimers attractor. The periodic orbit is such that the average
move in opposite directions. velocity is zero. However, we reach another crisis
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Fig. 9. Fora = 0.074,b = 0.1 andw = 0.67 we show a detailed
amplification of Fig. 8 in the size interval [B1, 0.34]: (a) the
bifurcation diagram of the rigid dimer as a function loénd (b)
the average velocity"v of the rigid dimer as a function df, in
the same range.

Fig. 8. Fora = 0.074,» = 0.1 andw = 0.67 we show: (a) the
bifurcation diagram of the rigid dimer as a function loénd (b)
the average velocity"v of the rigid dimer as a function aof, in

the same range.

to a chaotic region, around~ 0.3, that generates a [ ~ 0.327, where the chaotic attractor suddenly re-
negative currentThis negative current is maintained duces in size. Finally, ifrig. 10 we show two trajec-
during the chaotic region betweér~ 0.30 and/ ~ tories for two dimers of different size. Even though the
0.33. However, around this value, there is again an- size is almost the same, the dimers move apart. The
other crisis bifurcation, in which the chaotic attractor dimer with! = 0.3275 has a positive average velocity,
reduces in size and this bifurcation producesua according tdrig. %, while the dimer with = 0.3250
rent reversal the current “jumps” in an abrupt way to  has a negative average velocity. Both trajectories are
reach values fluctuating aroufth = 1. The connec-  chaotic, as can be seen in the bifurcation diagram
tion follows in the same fashion for larger valuedof  in Fig. 9a. This implies that two dimers, starting at

In Fig. 9, we show in more detail the bifurcation the same point with zero velocity, separate from each
diagram and the average velocity, as a functiord,of  other, even when the size difference is very small. In
in the range [(B1, 0.34], where a current reversal oc- this way we can think of a possible mechanism for seg-
curs. We notice more clearly the connection between regation of particles according to its size, even for the
the current reversal and a crisis bifurcation, around same mass.
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