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Current reversals in deterministic ratchets: points and dimers
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Abstract

We address the problem of the chaotic transport of point particles and rigid dimers in an asymmetric periodic ratchet
potential. When the inertial term is taken into account, the dynamics can be chaotic and modify the transport properties. By
a comparison between the bifurcation diagram and the current, we identify the origin of the multiple current reversals as
bifurcations, usually from a chaotic to a periodic regime. We consider the dynamics of rigid dimers, as a function of size,
extending in this way our previous results for point particles.
© 2002 Elsevier Science B.V. All rights reserved.

PACS:05.45.Ac; 05.40.Fb; 05.45.Pq; 05.60.Cd

Keywords:Deterministic ratchets; Chaotic transport; Current reversals

1. Introduction

There is an increasing interest in recent years in
the study of the transport properties of nonlinear
systems that can extract usable work from unbiased
non-equilibrium fluctuations. These so-called ratchet
systems can be modeled, for instance, by considering
a Brownian particle in a periodic asymmetric potential
and acted upon by an external time-dependent force
of zero average. This recent burst of work is motivated
in part by the challenge to explain the unidirectional
transport of molecular motors in the biological realm
and the possibility for new methods of separation of
particles. For recent reviews, see[1–4].

Although the vast majority of the literature in this
field considers the presence of noise, very recently
there has been motivations to understand in detail the
transport properties of classicaldeterministic iner-
tial ratchets[5–21]. These ratchets have in general a
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classical chaotic dynamics that determines the trans-
port properties. The implications of this chaotic dy-
namics in deterministic ratchets have recently been
address in the quantum domain, together with the
possible connection with quantum chaos[22–24].

In particular, in a recent paper[6] we established,
for the first time, a connection between the current
generated in a deterministic rocking ratchet and the
bifurcation diagram associated with chaotic dynam-
ics. It turns out that when we plot the current, defined
as an average velocity, against a control parameter of
the system, we found multiple current reversals; on
the other hand, we can obtain a bifurcation diagram
plotting the velocity of the particle as a function of
the same control parameter. We notice a clear con-
nection between these two plots and by doing a close
comparison we found that the current reversals occur
associated with bifurcations. In many cases, these re-
versals occur in crisis bifurcations from a chaotic to a
periodic regime.

It is worth mentioning that this prediction has been
verified qualitatively in a recent experiment done by
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Carapella et al.[20], using the ratchet effect for a rel-
ativistic flux quantum trapped in an annular Joseph-
son junction embedded in an inhomogeneous magnetic
field.

In this paper, we elaborate on this idea by studying
current reversals and bifurcations for point particles
and extended rigid dimers. We analyze trajectories
and orbits in phase space for point particles. We also
present current reversals, as a function of the size
of the rigid dimers, together with the corresponding
bifurcation diagram.

The outline of the paper is as follows: inSection 2,
we introduce the equations of motion that define the
model and inSection 3we present the numerical re-
sults. Then we study the case of extended objects in
Section 4and finally we end with some concluding
remarks inSection 5.

2. The ratchet potential model

Let us consider the one-dimensional problem of a
particle driven by a periodic time-dependent external
force, under the influence of an asymmetric periodic
potential of the ratchet type. The time average of
the external force is zero. Here, we do not take into
account any kind of noise and thus the dynamics is
deterministic. The equation of motion is given by

mẍ + γ ẋ + dV (x)

dx
= F0 cos(ωDt), (1)

wherem is the mass of the particle,γ the friction
coefficient, V (x) the external asymmetric periodic
potential,F0 the amplitude of the external force and
ωD the frequency of the external driving force. The
ratchet potential is given by

V (x)= V1 − V0 sin
2π(x − x0)

L

−V0

4
sin

4π(x − x0)

L
, (2)

whereL is the periodicity of the potential,V0 the
amplitude andV1 an arbitrary constant. The potential
is shifted by an amountx0 in order that the minimum
of the potential is located at the origin.

Let us define the following dimensionless units:
x′ = x/L, x′

0 = x0/L, t ′ = ω0t , w = ωD/ω0, b =
γ /mω0 and a = F0/mLω2

0. Here, the frequencyω0

is given byω2
0 = 4π2V0δ/mL2 and δ is defined by

δ = sin(2π |x′
0|) + sin(4π |x′

0|).
The frequencyω0 is the frequency of the linearized

motion around the minima of the potential, thus we
are scaling the time with the natural period of motion
τ0 = 2π/ω0. The dimensionless equation of motion,
after renaming the variables again without the primes,
becomes

ẍ + bẋ + dV (x)

dx
= a cos(wt), (3)

where the dimensionless potential can be written as

V (x)=C − 1

4π2δ

[
sin 2π(x − x0)

+1

4
sin 4π(x − x0)

]
, (4)

and is depicted inFig. 1. The constantC is such
that V (0) = 0 and is given byC = −( sin 2πx0 +
0.25 sin 4πx0)/4π2δ. In this case,x0 	 −0.19, δ 	
1.6 andC 	 0.0173.

In the equation of motion(3), there are three dimen-
sionless parameters:a, b andw, defined above in terms
of physical quantities. The parametera = F0/mLω2

0
is the ratio of the amplitude of the external force and
the force due to the potentialV (x). This can be seen
more clearly using the expression forω2

0 in terms of
the parameters of the potential. In this case, the ratio

Fig. 1. The dimensionless ratchet periodic potentialV (x).
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becomes

a = 1

4π2δ

F0L

V0
, (5)

i.e., except for a constant factor,a is the ratio ofF0

and the forceV0/L, whereV0 is the amplitude andL
the periodicity of the potential (seeEq. (2)). The pa-
rameterb is simply the dimensionless friction coeffi-
cient andw the ratio of the driving frequency of the
external force andω0.

The extended phase space in which the dynamics is
taking place is three-dimensional, since we are dealing
with an inhomogeneous differential equation with an
explicit time dependence. This equation can be writ-
ten as a three-dimensional dynamical system, that we
solve numerically, using the fourth-order Runge–Kutta
algorithm. The equation of motion(3) is nonlinear
and thus allows the possibility of periodic and chaotic
orbits. If the inertial term associated with the second
derivative ẍ was absent, then the dynamical system
could not be chaotic.

The main motivation behind this work is to study
in detail the origin of the current reversal in a chaot-
ically deterministic rocked ratchet as found in[6]. In
order to do so, we have to study first the currentJ it-
self, that we define as the time average of the average
velocity over an ensemble of initial conditions. There-
fore, the current involves two different averages: the
first average is overM initial conditions, that we take
equally distributed in space, centered around the ori-
gin and with an initial velocity equal to zero. For a
fixed time, saytj , we obtain an average velocity, that
we denoted asvj , and is given by

vj = 1

M

M∑
i=1

ẋi (tj ). (6)

The second average is a time average; since we take a
discrete time for the numerical solution of the equation
of motion, we have a discrete finite set ofN different
timestj ; then the current can be defined as

J = 1

N

N∑
j=1

vj . (7)

This quantity is a single number for a fixed set of
parametersa, b,w.

Besides the orbits in the extended phase space, we
can obtain the Poincaré section, using as a strobo-
scopic time the period of oscillation of the external
force. With the aid of Poincaré sections, we can dis-
tinguish between periodic and chaotic orbits and we
can obtain a bifurcation diagram as a function of the
parametera. As was shown in[6], there is a connec-
tion between the bifurcation diagram and the current.

3. Numerical results

Using the definition of the currentJ given in the
previous section, we calculateJ fixing the parameters
b = 0.1 andw = 0.67 and varying the parametera.
The current shows, as stressed before[5,6], multiple
current reversals and a complex variation witha, as
shown inFig. 2. We can observe strong fluctuations
as well as portions where the current is approximately
constant. The challenge here is to explain this high
variability in the current with the aid of what we know
from the nonlinear chaotic dynamics of the system.

In order to understand the first reversal of the cur-
rent, let us analyze a range of values ofa between
0.065 and 0.085; we choseb = 0.1 andw = 0.67. In
Fig. 3a, we show the bifurcation diagram as a function
of a and inFig. 3b we depict the current in the same
range ofa. Let us imagine that an ensemble of parti-
cles are initially located at the minimum of the ratchet
potential around the origin, and that all these particles
have an initial velocity equal to zero. Fora = 0, we
have no external force and thus, all these particles re-
main in the minimum around the origin and therefore
the current is zero. For very small values ofa, we still
have a zero current, since the particles have friction
and tend to oscillate in this minimum. However, there
is a critical value ofa for which the particles start to
overcome the potential barriers around the minimum
and transport along the ratchet potential in a periodic
or chaotic way.

At the beginning, the current is dominated by trans-
port due to periodic orbits, but for larger values ofa,
some of the orbits in the ensemble become chaotic
and the transport is not as efficient as before, result-
ing in a current that starts to oscillate erratically. In
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Fig. 2. Forb = 0.1 andw = 0.67 we show the currentJ as a function ofa. We can see multiple current reversals.

fact, in this region, there exist the possibility of co-
existence of multiple attractors in the phase space. For
example, inFig. 3a, we have two coexistent attrac-
tors: a periodic and a chaotic one, arounda = 0.067.
In this case, depending on the initial conditions, some
orbits in the ensemble can end up in the periodic at-
tractor, and the rest in the chaotic attractor. In general,
the current can depend on which basin of attraction
one is located, because different attractors have dif-
ferent transport properties. For example, one attractor
can transport particles in the positive direction, while
the other in the negative direction.

For values ofa even larger, all the orbits enter a
chaotic region through a period-doubling bifurcation,
and the current starts to decrease inside this chaotic
band. Finally, exactly at the bifurcation point where a
periodic window opens, the current drops to zero and
becomes negative in a very abrupt way.

Let us focus first on the range of the control param-
eter where the first current reversal takes place. This
occurs arounda 	 0.08 as shown inFig. 3. We can
observe a period-doubling route to chaos and after a

chaotic region, there is a crisis bifurcation (see[25])
taking place at the critical valueac 	 0.08092844. It
is precisely at this bifurcation point that the current
reversal occurs. After this bifurcation, a periodic win-
dow emerges, with an orbit of period 4. InFigs. 3a and
b, we are analyzing only a short range of values ofa,
where the first current reversal takes place. If we vary
a further, we can obtain multiple current reversals, as
shown inFig. 2.

In order to understand in more detail the nature of
the current reversal, let us look at the orbits just before
and after the transition. The reversal occurs at the crit-
ical valueac 	 0.08092844. Ifa is below this critical
valueac, saya = 0.07, then the orbit is periodic, with
period 2. For this case we depict, inFig. 4a, the posi-
tion of the particle as a function of time. We notice a
period-2 orbit, as can be distinguish in the bifurcation
diagram fora = 0.07. This orbit transport particles to
the positive direction and the corresponding velocity
is a periodic function of time of period 2, as shown
in Fig. 4b. The phase space for this orbit is depicted
in Fig. 4c. We notice that the particle oscillates for a
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Fig. 3. Forb = 0.1 andw = 0.67 we show: (a) the bifurcation diagram as a function ofa and (b) the currentJ as a function ofa. The
range in the parametera corresponds to the first current reversal.
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Fig. 4. Forb = 0.1, w = 0.67 anda = 0.07 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a function
of time and (c) the phase space. This case corresponds to positive current.
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Fig. 4. (Continued).

while around the minima of the ratchet potential, be-
fore moving to the next one. The spatial asymmetry of
the potential is apparent in this orbit in phase space.

In Fig. 5a, we show again the position as a function
of time for a = 0.081, which is just above the critical
valueac. In this case, we observe a period-4 orbit that
corresponds to the periodic window in the bifurcation
diagram inFig. 3a. This orbit is such that the particle
is “climbing” in the negative direction, i.e., in the di-
rection in which the slope of the potential is higher.
We notice that there is a qualitative difference between
the periodic orbit that transport particles to the positive
direction and the periodic orbit that transport particles
to the negative direction: in the latter case, the particle
requires twice the time than in the former case, to ad-
vances one well in the ratchet potential. A closer look
at the trajectory inFig. 5a reveals the “trick” that the
particle uses to navigate in the negative direction: in
order to advance one step to the left, it moves first one
step to the right and then two steps to the left. The net
result is a negative current.

The period-4 orbit is apparent inFig. 5b, where we
show the velocity as a function of time. InFig. 5c,
we depict the corresponding phase space for this case.
The transporting orbit is more elaborate because it
involves motion to the positive and negative direc-
tions, as well as oscillations around the minima. In
Fig. 6a, we show a typical trajectory fora just be-
low ac. The trajectory is chaotic and the correspond-
ing chaotic attractor is depicted inFig. 7. In this case,
the particle starts at the origin with no velocity; it
jumps from one well in the ratchet potential to an-
other well to the right or to the left in a chaotic way.
The particle gets trapped, oscillating for a while in a
minimum (sticking mode), as is indicated by the in-
teger values ofx in the ordinate, and suddenly starts
a running mode with average constant velocity in the
negative direction. In terms of the velocity, these run-
ning modes, as the one depicted inFig. 5a, correspond
to periodic motion. This can be seen more clearly
in Fig. 6b, where we plot the velocity as a function
of time in the same range of values as the orbit in
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Fig. 5. For b = 0.1, w = 0.67 anda = 0.081 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a
function of time and (c) the phase space. This case corresponds to negative current.
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Fig. 5. (Continued).

Fig. 6a. In Fig. 6c, we show the corresponding phase
space.

The phenomenology can be described as follows.
For values ofa aboveac, as inFig. 5a, the attractor is a
periodic orbit. Fora slightly less thanac there are long
stretches of time (running or laminar modes) during
which the orbit appears to be periodic and closely re-
sembles the orbit fora > ac, but this regular (approxi-
mately periodic) behavior isintermittentlyinterrupted
by finite duration “bursts” in which the orbit behaves
in a chaotic manner. The net result in the velocity is a
set of periodic stretches of time interrupted by burst of
chaotic motion, signaling precisely the phenomenon
of intermittency[25]. As a approachac from below,
the duration of the running modes in the negative di-
rection increases, until the duration diverges ata = ac,
where the trajectory becomes truly periodic.

To complete this picture, inFig. 7, we show two at-
tractors: (1) the chaotic attractor fora = 0.08092, just
below ac, corresponding to the trajectory inFig. 6a,
and (2) the period-4 attractor fora = 0.08093,

corresponding to the trajectory inFig. 5a. This peri-
odic attractor consists of four points in phase space,
which are located at the center of the open circles. We
obtain these attractors confining the dynamics inx

between−0.5 and 0.5, i.e., we used the periodicity of
the potentialV (x + 1) = V (x), to map the points in
thex-axis modulo 1. Thus, even though the trajectory
transport particles to infinity, when we confine the
dynamics, the chaotic structure of the attractor is ap-
parent. Asa approachesac from below, the dynamics
in the attractor becomes intermittent, spending most
of the time in the vicinity of the period-4 attractor,
and suddenly “jumping” in a chaotic way for some
time, and then returning close to the period-4 attractor
again, and so on. In terms of the velocity, the result
is an intermittent time series as the one depicted in
Fig. 6b.

In order to characterize the deterministic diffu-
sion in this regime, we calculate the mean square
displacement〈(x − 〈x〉)2〉 as a function of time. We
obtain numerically that〈(x − 〈x〉)2〉 ∼ tα, where the
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Fig. 6. Forb = 0.1, w = 0.67 anda = 0.08092844 we show: (a) the trajectory of the particle as a function of time, (b) the velocity as a
function of time and (c) the phase space. This case corresponds toa near the bifurcation, where the dynamics becomes intermittent and
there is anomalous diffusion.
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Fig. 6. (Continued).

exponentα 	 3/2. This is a signature of anomalous
deterministic diffusion, in which〈(x − 〈x〉)2〉 grows
faster than linear, i.e.,α > 1 (superdiffusion). Normal
deterministic diffusion corresponds toα = 1. In

Fig. 7. For b = 0.1 and w = 0.67 we show two attractors: a
chaotic attractor fora = 0.08092, just belowac, and a period-4
attractor, fora = 0.08093, consisting of four points located at the
center of the open circles (see Ref.[6]).

contrast, the trajectories inFigs. 4a and 5atransport
particles in a ballistic way, withα = 2. The relation-
ship between anomalous deterministic diffusion and
intermittent chaos has been explored recently, together
with the connection with Lévy flights (see the reviews
[26–28]). The signature of this anomalous diffusion
can be seen more clearly inFig. 6a, where we plot a
trajectory showing running modes of different sizes,
typical from Lévy flights.

4. Extended objects: rigid dimers

Let us consider now the case where we have, instead
of a point particle, an extended rigid dimer of lengthd,
i.e., two point particles kept rigidly at a fixed distance
d. If we define a dimensionless lengthl = d/L, where
L is the periodicity of the ratchet potential inEq. (2),
the dynamics of this dimer in the ratchet potential is
equivalent to the dynamics of a point particle in an
effective potential given by

Ul(x) = 1
2[V (x) + V (x + l)], (8)
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whereV (x) is the dimensionless potential inEq. (4).
Due to the periodicity of the dimensionless ratchet
potentialV (x + 1) = V (x), we have that the effec-
tive dimensionless potential is periodic:Ul(x + 1) =
Ul(x). Since the period is 1, it is enough to take the
dimensionless length of the rigid dimer in the unit in-
terval: 0 ≤ l ≤ 1. We can see that we recover the
point particle case whenl = 0 or 1. The equation of
motion for this dimer is then given by

ẍ + bẋ + dUl(x)

dx
= a cos(wt). (9)

In this case, we have an additional parameterl in
the dynamics. According to this equation of motion,
the dynamics of the dimer is modeled using a single
degree of freedom, since we are not considering any
internal degree of freedom or rotational motion.

It is important to mention that several authors be-
fore had studied the case of a rigid dimer in a ratchet
potential, in the overdamped limit. The case of a sin-
gle rigid dimer in the overdamped limit in the presence
of noise was studied in[29,30]. They obtain a current
reversal as a function of the dimer length. Also, in the
overdamped limit, there are studies of the collective
transport ofN rigid rods of finite size; these rods are
interacting through hard core repulsion[31,32]. For
an overview of the collective transport in ratchets, see
[3,4,33].

More recently, the problem of horizontal transport
of vertically vibrated granular layers on a ratchet was
addressed[34,35]; it was found that increasing the
layer thickness leads to a reversal of the current. Farkas
et al.[36] studied the case of granular binary mixtures
where, unlike other segregation phenomena, in which
the segregation is due to the collective behavior of the
grains, the interaction between the ratchet and the in-
dividual particles is dominant. If the density of parti-
cles is low, the interaction between the objects can be
neglected, recovering a single rod description. Finally,
Wambaugh et al.[37] perform simulations of elon-
gated grains on a vibrating ratchet-shaped base; they
consider grains composed of one (monomers), two
(dimers) or three (trimers) collinear spheres. For some
parameters, they found that monomers and dimers
move in opposite directions.

In this section, we are considering the underdamped
determinist dynamics of a rigid dimer. We solve the
problem of the rigid dimer in the same fashion as the
point particle, but instead of calculating the currentJ

defined inSection 2, we calculate the time average of
the velocityv = ẋ. This average is calculated overq
periodsT of the external force, whereq is an integer
number andT = 2π/w. That is,

v̄ = 1

qT

∫ t+qT

t

v(t ′)dt ′. (10)

Sincev = ẋ, we obtainv̄ = [x(t + qT)− x(t)]/qT. If
the particle moves a distancep in a timeqT, wherep
is another integer number, then we have the condition
x(t+qT)−x(t) = p. Thus, we obtain that the current
is T v̄ = p/q. This means that we havefrequency
locking in which the current times the periodT is a
rational numberp/q. We will see that this frequency
locking takes place in a whole range of values of the
parameterl.

In Fig. 8a, we show the bifurcation diagram as a
function ofl in the unit interval, and inFig. 8b the cor-
responding average velocity in the same range. We use
the following values for the parameters:a = 0.074,
b = 0.1 andw = 0.67. We obtain a rich structure of
bifurcations when we vary the size of the rigid dimer.
We notice the presence of periodic and chaotic orbits.
As a consequence of the complexity of the bifurca-
tion diagram, we obtain an average velocity with fine
structure. Again, there is a clear connection between
the two graphs.

Let us briefly describe this connection in some
detail. For very small values ofl we have a positive
velocity fluctuating aroundT v̄ = 1/2, associated with
the period-2 orbit in the bifurcation diagram. After
another bifurcation, the dynamics becomes chaotic
for l 	 0.05 and the average velocity decreases
abruptly. For the chaotic region 0.05 < l < 0.2, the
current decrease even more in an erratic way, except
for a “jump” in the current aroundl = 0.18, clearly
associated with a periodic window in the bifurcation
diagram. Then, forl 	 0.2, a crisis bifurcation occurs
in which the chaotic attractor collapses to a period-1
attractor. The periodic orbit is such that the average
velocity is zero. However, we reach another crisis
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Fig. 8. Fora = 0.074, b = 0.1 andw = 0.67 we show: (a) the
bifurcation diagram of the rigid dimer as a function ofl and (b)
the average velocityT v̄ of the rigid dimer as a function ofl, in
the same range.

to a chaotic region, aroundl 	 0.3, that generates a
negative current. This negative current is maintained
during the chaotic region betweenl 	 0.30 andl 	
0.33. However, around this value, there is again an-
other crisis bifurcation, in which the chaotic attractor
reduces in size and this bifurcation produces acur-
rent reversal: the current “jumps” in an abrupt way to
reach values fluctuating aroundT v̄ = 1. The connec-
tion follows in the same fashion for larger values ofl.

In Fig. 9, we show in more detail the bifurcation
diagram and the average velocity, as a function ofl,
in the range [0.31,0.34], where a current reversal oc-
curs. We notice more clearly the connection between
the current reversal and a crisis bifurcation, around

Fig. 9. Fora = 0.074, b = 0.1 andw = 0.67 we show a detailed
amplification of Fig. 8 in the size interval [0.31,0.34]: (a) the
bifurcation diagram of the rigid dimer as a function ofl and (b)
the average velocityT v̄ of the rigid dimer as a function ofl, in
the same range.

l 	 0.327, where the chaotic attractor suddenly re-
duces in size. Finally, inFig. 10, we show two trajec-
tories for two dimers of different size. Even though the
size is almost the same, the dimers move apart. The
dimer withl = 0.3275 has a positive average velocity,
according toFig. 9b, while the dimer withl = 0.3250
has a negative average velocity. Both trajectories are
chaotic, as can be seen in the bifurcation diagram
in Fig. 9a. This implies that two dimers, starting at
the same point with zero velocity, separate from each
other, even when the size difference is very small. In
this way we can think of a possible mechanism for seg-
regation of particles according to its size, even for the
same mass.
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Fig. 10. Fora = 0.074, b = 0.1 andw = 0.67 we show two tra-
jectories for two dimers of different size. The full line corresponds
to a dimer withl = 0.3275 (positive current) and the dashed line
to a dimer withl = 0.3250 (negative current).

5. Concluding remarks

In summary, we have studied the chaotic dynam-
ics of point particles and extended rigid dimers in a
ratchet potential under the influence of an external
periodic force. We established a connection between
the bifurcation diagram and the current, and identi-
fied the mechanism by which the current reversals in
deterministic ratchets arise: it corresponds to bifur-
cations, usually from a chaotic to a periodic regime.
Near this crisis bifurcations, the chaotic trajectories
exhibit intermittent chaos and the transport arises
through deterministic anomalous diffusion with an
exponent greater than 1. We also studied the dynam-
ics of dimers of finite size and found that the ratchet
can transport these dimers in opposite directions,
even when the size difference is very small. Thus, by
establishing a connection between bifurcations in the
nonlinear dynamics and current reversals, this work
can shed some light in the problem of segregation of
granular media using the ratchet effect.
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