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Abstract

The classical problem of a time-modulated barrier, inspired by the Buttiker and Landauer model to study the tunneling¨
times, is analyzed. We show that the traversal-time distribution of an ensemble of non-interacting particles that arrives at the
oscillating barrier, obeys a distribution with a power-law tail. q 1999 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

The problem of obtaining the time involved in the
tunneling process in quantum mechanics is still a
controversial issue, despite considerable efforts in

w xrecent years 1 . In particular, in order to address this
issue, some authors have analyzed the tunneling

w xthrough time-modulated potential barriers 2–14 .
One of the pioneer works in this area is the model

w xintroduced by Buttiker and Landauer in 1982 2 in¨
which they consider the transmission through a
time-modulated rectangular barrier, and introduced a
characteristic time for the process. However, in the
above-mentioned papers, there is practically no men-
tion of the corresponding classical problem; although
the classical limit is straightforward when the poten-

1 Ž .E-mail: mateos@fenix.ifisicacu.unam.mx; Fax: 525 622-
Ž .5015; Phone: 525 622-5130.

tial barrier does not depend on time, it is far from
trivial when the potential is time modulated.

In this paper I study the classical problem of a
rectangular time-modulated potential barrier, in order
to analyze in detail the traversal time distribution for
an ensemble of classical particles. This classical
model was inspired, in part, by the Buttiker-Landauer¨
model mention above.

I will study first the case of a potential barrier
w xlocated inside a rigid box 15 . In this case, the

classical orbits can be periodic, quasiperiodic or even
chaotic, depending on the parameters and the initial
conditions of the motion. In order to study the
dynamics, I derive first an area-preserving map that
allow us to find the orbits for all times. Then, I study
the scattering problem of an ensemble of particles
that interact with an oscillating rectangular potential
barrier. In this case, I will show that the traversal
time strongly depends on the arrival time of the
incident particles.
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There is a basic difference between these two
Ž .problems: 1 In the first case, what we have is the

bounded problem of an oscillating barrier inside a
rigid box of finite size. This means that an incident
particle interact with the barrier not once but an
arbitrary number of times, since the particle can
cross the barrier region and then, after bouncing
elastically in the box, returns to the oscillating bar-
rier. Then, the dynamics can become chaotic, since
we have the main ingredients: on one hand, sensitive
dependence on initial condition or arrival times due
to the oscillating barrier, and on the other hand,

Ž .bounded motion due to presence of the finite box. 2
In the second case, we have a scattering problem in
which an incident particle interacts with the barrier
only once. Of course, if this is the case, the problem
is straightforward and there is only a single traversal
time. But, if we consider an ensemble of N noninter-
acting particles with slightly different initial condi-
tions, say different initial velocities, then we can
expect, in general, N different traversal times that
can exhibit a complex distribution of traversal times.

An approach to the problem of tunnelling times,
that is closely related to the classical trayectories
discussed here, is the Bohm trajectory point of view
w x16 . This approach has been used by Leavens and

w xAers 17 to give an unambiguous prescription for
calculating traversal times that are conceptually
meaningful within that interpretation. In particular,

w xLeavens and Aers 6,7 have treated in detail the case
of a time-modulated rectangular barrier, using
Bohm’s trajectory interpretation of quantum mechan-

w xics 16 . They calculate, among other things, trans-
mission time distributions, the transmission probabil-
ity as a function of frequency and Bohm trajectories.

2. The model and the map

Let us study the classical dynamics of a particle in
a one-dimensional box, inside of which there is an

w xoscillating rectangular potential barrier 15 . This
problem consists of a particle moving in one dimen-
sion under the action of a time-dependent potential
Ž .V x,t . Since the Hamiltonian of this system is time

dependent, the total energy of the particle is not

Ž .conserved. The Hamiltonian is given by H x, p,t s
2 Ž .p r2mqV x,t , where

V x ,t sV x qV x f t . 1Ž . Ž . Ž . Ž . Ž .0 1

Ž .The potential V x goes to infinity when x-0 or0

x) lqbqL, is equal to the constant value V when0

lFxF lqb, and otherwise is equal to zero. Thus,
what we have is an infinite potential well with a
rectangular potential barrier of width b inside, as
shown in Fig. 1a. This potential separates the box in
three regions: region I, 0Fx- l of width l; region
II, where the rectangular barrier is located, lFxF l
qb of width b; and region III, lqb-xF lqbqL
of width L.

Clearly, the motion of a particle under the influ-
Ž .ence of the potential V x is regular, that is, we0

.Fig. 1. a Potential well with a rectangular time-modulated poten-
tial barrier of width b. The height of the barrier oscillates harmon-

.ically between V qV and V yV . b Typical orbit in phase0 1 0 1

space, showing a general change in the velocity for one iteration
Ž . Ž .of the map solid line and a second iteration dashed line .
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have periodic orbits and the energy is conserved.
However, if we add a time-dependent potential, we
can obtain periodic, quasiperiodic and chaotic orbits,

Ž .as we will show below. The potential V x in Eq.1
Ž .1 is different from zero only inside the interval
lFxF lqb, where it takes the constant value V .1

Ž . Ž .The function f t in Eq. 1 is assumed periodic with
Ž . Ž .period t , that is, f tqt s f t . In this way, as

shown in Fig. 1a, what we have is an oscillating
potential barrier, with an amplitude which oscillates
between V yV and V qV , with frequency vr2p0 1 0 1

and period ts2prv. We will take V )V .0 1

Let us now derive a map that describes the dy-
namics of a particle under this potential. The motion
is as follows: at the fixed walls at xs0 and xs lq
bqL, the particle bounces elastically, changing the
sign of the velocity but with the same absolute value.
The other two points where there is a change in the
velocity is at the borders of the potential barrier at
xs l and xs lqb. The rest of the time the velocity
is constant. Thus, the particle can gain or loose
kinetic energy at xs l and xs lqb. The phase
space for a typical orbit is depicted in Fig. 1b.

We can analyze the dynamics using a discrete
map from the time t when the particle hits the walln

at xs0, until the next time t when it hits thisnq1

wall again. Let us denote by Õ the velocity of then

particle immediately after the ny th kick with the
fixed wall at xs0, and by E the correspondingn

total energy. Clearly, E smÕ2r2. After travelingn n

the distance l, it arrives at the left side of the barrier
after a time of flight lrÕ , where a change in then

velocity occurs. To determine this change let us
consider the following: In region I, the total energy
of the particle is given by E smÕ2r2 which is justn n

the kinetic energy, because in this region the poten-
tial energy is zero; when the particle enters region II,
the kinetic energy EX is changed to E yV yn n 0

Ž .V f t q lrÕ , that is, the total energy minus the1 n n

value of the potential energy at the time of arrival
X Žt q lrÕ . If we denote the new velocity by Õ seen n n

. X X 2Fig. 1b , then E smÕ r2 and we obtain in thisn n

way the change in energy as

l
XE sE yV yV f t q . 2Ž .n n 0 1 nž /Õn

Clearly, if the total energy is less than the potential
energy at time t q lrÕ , then the particle cannotn n

penetrate region II and simply reflects elastically and
there is only a change in the sign of the velocity;
thus the particle gets trapped in region I and returns
to the wall at xs0. After a time lapse of 2 lrÕ itn

will hit again the oscillating barrier and try again to
cross it. If this time the total energy is greater than
the potential energy, then the particle can cross the
barrier region; otherwise, it bounces once more in-
side region I, and so on.

Now, once the particle overcomes the barrier, it
crosses the region II without changing its velocity
Õ

X , even though the barrier is oscillating in time.n

When the particle arrives at the right side of the
barrier at xs lqb, then another change in the
velocity takes place, but this time the velocity in-
creases in such a way that the kinetic energy EXX

n

becomes

l b
XX XE sE qV qV f t q q , 3Ž .n n 0 1 n Xž /Õ Õn n

where EXX is the energy in region III. Clearly, then

time that it takes to arrive at the wall located at
xs lqbqL is lrÕ qbrÕX qLrÕXX, where Õ

XX isn n n n
Ž .the velocity in region III see Fig. 1b . After a time

t q lrÕ qbrÕX q2 LrÕXX, the particle returns to then n n n

right side of the barrier after traveling twice the
distance L in region III, and enters once again region
II. However, in general, the potential barrier has a

Ždifferent height, given by V qV f t q lrÕ q0 1 n n
X XX.brÕ q2 LrÕ . Therefore, the new kinetic energyn n

EXXX inside region II is now given byn

l b 2 L
XXX XXE sE yV yV f t q q q . 4Ž .n n 0 1 n X XXž /Õ Õ Õn n n

Here, once more, there is the possibility that the total
energy in region III is less than the potential energy
at time t q lrÕ qbrÕX q2 LrÕXX. In this case, then n n n

particle gets trapped in region III until it can escape
by crossing the barrier region.

< XXX < XXXFinally, after a time br Õ , where Õ is then n
Ž .velocity in region II see Fig. 1b , the particle arrives

at the left side of the barrier at xs l, where the
velocity varies once more depending on the height of
the barrier at time t q lrÕ qbrÕX q2 LrÕXX qn n n n

< XXX <br Õ . We will denote the velocity in region I, aftern

this time, by Õ , because this is precisely thenq1

velocity after the next hit with the wall at xs0. The
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last part of this journey is covered in a time span of
< <lr Õ ; after this, the particle hits the wall at thenq1

origin at time t and start again its trip to thenq1

oscillating barrier, and the whole process starts again.
Therefore we arrive at the following map in terms

of energy and time:

E sEXXX qV qV f t qT 5Ž . Ž .nq1 n 0 1 n n

and

m l
t s t qT q , 6Ž .(nq1 n n 2 E( nq1

where T is given byn

m l b 2 L b
T s q q q 7Ž .(n X XX XXXž /2 E E E E( ( ( (n n n n

X XX XXX Ž . Ž .and E , E and E are given by Eqs. 2 – 4 ,n n n

respectively.
Furthermore, it can be shown that, for this map,

the Jacobian is exactly one, that is,

E E ,tŽ .nq1 nq1
Js s1. 8Ž .

E E ,tŽ .n n

This result indicates that this map is an area-preserv-
w xing one 18 .

Let us scale the time using the period t of the
Ž .function f t . We define the dimensionless quanti-
Ž . Ž .ties: f s 2prt t and F s 2prt T . In order ton n n n

scale the energies we introduce the dimensionless
variables: e sE rV , eX sEX rV , eXX sEXXrV andn n 0 n n 0 n n 0

eXXX sEXXXrV . With all this definitions we arrive atn n 0

the following dimensionless map:

e seXXX q1qrf f qF , 9Ž . Ž .nq1 n n n

and

2p M
f sf qF q , mod 2p 10Ž . Ž .nq1 n n e( nq1

Ž . Žwhere M s lr wt , r s V rV and w s 2V r1 0 0
.1r2m . Here, F is given byn

1 b 1 2 L 1 b 1
F s2p M q q q .n X XX XXXž /l l le e e e( ( ( (n n n n

11Ž .

This map, although more complicated, resembles the
w xstructure of the Fermi Map 18 .

3. Numerical results

Let us now analyze numerically the map obtained
above. First of all, we notice that we have four
dimensionless parameters: the width of the barrier
brl scaled with the length of region I; the length
Lrl of region III scaled with l; the ratio of the
amplitude of oscillation of the barrier scaled with its

Ž .height rsV rV ; and Ms lr wt . The parameter1 0

M is the ratio of the time of flight lrw in region I of
Fig. 1a, with velocity w, and the period t of oscilla-
tion of the barrier. That is, M measures the number
of oscillations of the barrier since the particle leaves
the wall at xs0 until it arrives at the left side of the
barrier. On the other hand, we will take the periodic

Ž . Ž .function as: f f ssin f .n n

If we fix the barrier position within the one-di-
mensional box, and choose a width, then we are
fixing the parameters brl and Lrl; the remaining
two parameters M and r will control the type of
motion. In what follows, we take the symmetric
case, brls1 and Lrls1, which corresponds to the
oscillating barrier centered inside the box, and an
oscillating amplitude of rs0.5.

Ž .In Fig. 2 we show the energy-phase space e ,fn n
Ž . Ž .for Ms4.7, using the map given by Eqs. 9 – 11 .

We plot several orbits that correspond to different
initial conditions. We can clearly see that, for this
system, we have a phase space with a mixed struc-
ture, in which we have periodic, quasiperiodic and
chaotic orbits. Some of the fixed points of the map
can be seen surrounded by elliptic orbits. We notice
a fine structure of smaller islands in the chaotic

w xregion, as is usually the case for other maps 18 .
The quantity that we want to analyze in detail is

the traversal time in the barrier region, that is, the
time it takes the particle to cross the region where
the barrier is oscillating. We can obtain this quantity

X < XXX < Ž .simply as brÕ or br Õ see Fig. 1b . The struc-n n

ture of this traversal or dwell time depends strongly
on the type of orbit. Clearly, if we have a periodic
orbit, then this time will take only two possible
values, since Õ

X and Õ
XXX does not change with n. Onn n

the other hand, if the orbit is quasiperiodic, the
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Ž .Fig. 2. Phase space e ,f , for Ms4.7 and rs0.5, showing periodic, quasiperiodic and chaotic orbits for different initial conditions.n n

Fig. 3. Space-time diagram of trayectories for an ensemble of incident particles with the same velocity and different phases. In this case
Ms77.7 and rs0.5. The horizontal dashed lines indicate the barrier region.
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velocity can vary in a full range of values. In this
case, the traversal time can vary only in a limited
range. However, when we have a chaotic orbit, the

w xvariation can display a very rich structure 15 .
For the bounded problem, where the oscillating

barrier is confined within a box, we can obtain a
chaotic dynamics as shown in Fig. 2. However, if we
remove the walls and leave only the oscillating
barrier, we end up with an open system of the
scattering type. In this case, we cannot have chaotic
dynamics, since the particle interacts with the barrier
only once. However, we can study not a single
particle, but an ensemble of noninteracting particles,
each of them with different initial conditions.

In Fig. 3 we show a space-time diagram of trayec-
tories for an ensemble of incident particles. In this
case, and for the rest of the figures, we take rs0.5
and Ms77.7. I use dimensionless distance xrl and
dimensionless time t, which is the time scaled with
lrw. Since lsb, then lrw is the time it takes to
cross the barrier region with a velocity w s
Ž .1r22V rm . The barrier is located between xrls10

and xrls2, and is indicated by horizontal dashed
lines in Fig. 3. We take an ensemble of initial

conditions in which the initial velocity is constant
and the initial phase is uniformily distributed. We
see from Fig. 3 that only a subset of particles in the
ensemble can cross the barrier region and that the
traversal time is different for each particle. This is
due to the fact that each particle is influenced differ-
ently by the time-modulated barrier, depending on
the arrival time. That is, different arrival times mean
different barrier amplitudes.

The traversal time is defined as the time it takes
to cross the region where the barrier is oscillating,
and is given by brÕX . Since we scale this traversaln

time with the time brw, the dimensionless form is
Xgiven by 1r e . For the particles in the ensemble,( n

this time is shown in Fig. 4. We notice that in many
cases the dimensionless time t;1; however, there
are some others cases for which t41. These large
peaks occur when the arrival time is such that the
total energy is just above the barrier heigth, and thus
the velocity inside the barrier region is very small
and consequently the traversal time is very large. We
can see a strong variation in the traversal time, that
leads to a broad distribution of times. On the other
hand, since the minimum velocity in the barrier

Fig. 4. Traversal time for an ensemble of incident particles. In this case Ms77.7 and rs0.5.
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Fig. 5. Traversal time distribution for the case Ms77.7 and rs0.5.

Fig. 6. Log-log plot of the traversal time distribution of Fig. 5, clearly showing a power law. The slope of the dashed line is y3.
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Fig. 7. Transmission coefficient as a function of M, for rs0.5.

Fig. 8. Average traversal time as a function of M, for rs0.5.



( )J.L. MateosrPhysics Letters A 256 1999 113–121 121

region is zero, then there is no upper bound for the
dwell time, and it can acquire very large values, as
seen in Fig. 4.

The traversal time distribution is depicted in Fig.
5. This normalized distribution has a long-time tail
which is a power law. In Fig. 6 we show the same
distribution in a log-log plot that clearly shows that
this is indeed a distribution with a power-law tail of

Ž . yathe form p t ; t , with a,3. The straight
Ž .dashed line in this figure has a slope of y3.

Another quantity of interest is the transmission
coefficient, defined as the number of particles that
cross the barrier region, divided by the total number
of particles in the ensemble. In Fig. 7 we show this
transmission coefficient as a function of M. Remem-

Ž .ber that Ms lr wt and is, therefore, proportional
to the frequency of oscillation of the barrier. We can
see in this figure that the transmission coefficient
vary strongly with M, in particular for low frequen-

Ž .cies M;1 . On the other hand, for higher frequen-
Ž .cies M41 , the transmission coefficient tend to-

wards a constant value. This last result indicates that
for M41, the oscillating potential barrier acts as an
effective potential barrier of average height V .0

Finally, in Fig. 8 we show the average traversal
time as a function of M. Again we can see strong
fluctuations of this quantity. Since the distribution of
traversal times is a power law with an exponent
a,3, we can expect these large fluctuations; al-
though the first moment of the distribution is finite
in this case, the second or higher moments can
diverge, leading to these large fluctuations, as is

w xusually the case for Levy distributions 19 .´

4. Concluding remarks

In this paper, the dynamics of the classical prob-
lem of an oscillating rectangular potential barrier is
analyzed. When the oscillating barrier is located
within a one-dimensional box, we have a bounded
problem and the corresponding classical dynamics
can have a mixed phase space structure comprising
periodic, quasiperiodic and chaotic orbits. For the
scattering problem of a single oscillating barrier, a
distribution of traversal times with a power-law tail
is obtained. This Levy-type distribution of times´
leads to large fluctuations of the average traversal
time as a function of the frequency of oscillation of

the barrier; therefore, it is difficult to obtain a charac-
teristic time to the process of crossing the classical
oscillating barrier. These large fluctuations arise due
to the sensitive dependence on initial conditions,
typical of the dynamics of chaotic systems. In partic-
ular, for our problem, the quantity that controls the
traversal time is the time of arrival at the barrier.
Thus, we obtain a sensitive dependence on the time
of arrival for the classical case. The possible role for
the tunneling time problem, if any, of the sensitive
dependence on the time of arrival and the difficulty
to obtain a characteristic traversal time in the classi-
cal domain, remains to be seen.
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